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1. Project Goals
The goal of the proposed work was to determine if the temporal asymmetry of signals
could be exploited by signal processing algorithms. We specifically intended to specify
the kinds of dependence structures having physical basis (rather than those chosen for the
modeler's convenience) and to develop detection or estimation algorithms sensitive to these
structures that yielded signal processing gains. Over the grant's three-year duration, lasting
from 1 September 1989 until 30 September 1992, a total of $148,248 in ONR funds and
$7,700 in Rice University matching funds were expended. Becuase of this support, these
research goals were accomplished, students receiving ONR suppoat graduated and have
engineering positiuns, and a significant volume of technical literature appeared in reviewed
journals and conference proceedings.

2. Research Results
Fundamentals of temporal symmetry were outlined in a masters thesis [8). There and in
previous conference papers [1, 10], the fundamentals of temporal symmetry analysis tech-
niques for time series were developed. We uncovered for the signal "--cessing community
an important result published by another researcher over ten years earlier: The only linear,
temporally symmetric random process was the Gaussian. This result means that all linear,
non-Gaussian processes were temporally asymmetric, a property theretofore unexplored by
the signal processing community. Linear Markov processes comprised the focal point of our
work, and they are generated by passing white noise W. through a first-order digital filter.

X. = aX-I + W.

To illustrate temporal asymmetry, we focused on the hyperbolic secant process, a partic-
ular linear non-Gaussian process unmentioned in thc literature. Superficially, this example
greatly resembles a Gaussian one, but has very different properties. Another example,
due to Rosenblatt, proved quite insightful. Here, the linear, first-order, process has a uni-
form amplitude distribution. Through these examples, the following properties were proven
valid [111:

* The forward conditional expected value E[X. I X,,-,) will be linear for all first-order
linear Markov protesses. The backward conditional expected value E[X.-I I X.,,
however, will be linear only in the Gaussian case. Thus, process linearity can be
tested by examination of the forward conditional mean. Furthermore, a sensitive test
for Gauusianity is to compare these conditional expected values for linearity.

* The backward mean-square prediction error of a non-Gaussian linear Markov process
is always less than the forward prediction error. The Rosenblatt example is particu-
larly striking in this regard: The backward mean-square prediction error is zero while
the forward prediction error is nonzero. We have further shown that the time-reversed
system, which takes X. and produces X.-I, is deterministic, nonlinear, and chaotic.
Thus, one set of ordered numbers can both be produced by a st•xhastic-driven system
and a deterministic, iterated one. From another perspective, a signal viewed looking
forward in time is random, while viewed looking backward in time is chaotic. We are
now pwsing the rsearcth qustion of what truly distinguishes stochastic from dao&ic
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e We found that unless the process has a class L distribution, it must be generated by
a so-called random coefficient system. The hyperbolic secant density is a member of
this class, and therefore has some physical basis. We demonstrated a specific test for
class L membership.

* We demonstrated a specific algorithm for generating a linear process having a specified
correlation coefficient and amplitude distribution. As one theoretical application of
this algorithm, we settled, in the affirmative, the technical question as to whether a
linear process could have a multimodal amplitude distribution.

Because of the importance of temporal symmetry, accurate measurement of the condi-
tional mean becomes an essential aspect of non-Gaussian signal processing. We developed
a novel nonparametric technique of efficiently estimating the conditional mean [5, 6, 7].
Here, we used the theory of nonparametric regression, and showed that it could be applied
to both stochastic and chaotic systems analysis. We developed a technique of identifying
the input-output relation of the system that generates a set of observations by operating
on a white noise input. Because the technique is nonparametric, it makes few assumptions
about the generation system; the algorithm does need to have the system's order. These
results have been submitted for publication.

In another line of work, we investigated a technique for determining the order of a
Markov linear process that did not depend on the ubiquitous Gaussian assumption. Our
algorithm is based on the conditional entropy of the process and has been published [4].
This algorithm applies to nonlinear as well as linear Markov processes. Its sole drawback
is computational complexity.

Toward the end of the granting period, a new, potentially important result emerged
that is based on the notion of temporal symmetry [2, 3]. We showed that all physically
obtained time series must result from time-irreversible random processes. Consequently,
models that produce time-reversible processes, in particular the Gaussian, have no physical
basis. Stationary Gaussian processes cannot serve as models of phyatical medsurments.
This important result is being prepared for formal publication.

We developed a specific algorithm for designing optimal detectors for linear, non-
Gaussian, continuous-time processes (9]. Here, specification of the random process is only
obtained with difficulty. Calculation of the detector requires detailed analysis of the Pois.
son random measures that underly the observations. These results have been submitted for
publication.

3. Students Supported
Over the project's three-year period, three graduate students were supported by ONR
funds. An undergraduate worked on aspects of the project, but was not supported by
research funds.

Anand R. Kumar received support for his wor!. on model-order estimation. Graduated
with a Ph.D. in 1990 and is now working for Motorola in India.

P. Srinivaw Rao received support for his work ia temporal symmetry and in robust
detection. He was awarded his doctoral degree in 1992 and is now working at the
IBM Watson Research Center in New York.
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Y. Kang Lee received support for his work in nonparametric system identification. He
received his masters degree in 1992 and is now pursuing his doctoral degree, studying
the fundamental properties of chaotic and non-Gaussian-stochastic signals.

David D. Becker developed a numerical algorithm for calculating the amplitude distri-
bution of W,, that could produce a first-order Markov linear process having a specified
amplitude distribution. This work served as the topic of his Senior Honors Project,
and was his first research experience. He wenL. on to receive a masters degree from
Stanford in 1991 and now works for General Electric Medical Systems.

4. Infrastructure
To complement ONR's award, Rice University provided funds to purchase a SUN (Sparc 1)
workstation for use on the project. This computer was used throughout the granting period
and is still used today in non-Gaussian signal processing research.
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ON THE EXISTENCE OF GAUSSIAN NOISEt
Don H. Johnson and P. S. Reo
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ABSTRACT turned to developing signal processing algorithms that ap-

The dependence structure and the amplitude distribution of ply to non-Gaussian noise problens. 1  While th- equa-
stationary random sequences are linked, with specifcation tions governing physical phenome"a do not directly con-
of one plcing constraints on the other. Time-reversible strain the probabilistic amplitude distribution of physicca
processes can be Gaussian or non-Gaussian, but all Gaus- variables, they do cotrain the statistical spatio-temporal
sian processes must be time reversible. We examine the dependence properties (correlation, for example) of signals
thermodynamics of measurementý showing that while "in- we might measure. We usually interpret temporal depen-
formation" can be extracted from a system without altering dence through the power density spectrum; in this view,
system entropy, most measurement techniques irreversibly only a constant power density spectrum would be free of
alter thermodynamic state with a consequent entropy •- temporal dependence. For example, temporal correlations
crease. Because of the second law of thermodynamics, sch are induced on propagating c.ean acoustic woise by the
entropy changes cannot be undone and measurements re- filtering characteristics of the medium (13]. A somewhat
flecting thermodynamic state cannot be time revertibie different dependence property of stochastic signas is the
We conclude that physical meaurements are not time m- notion of temporal symmetry, where time-reversed sample
versible, implying that only non-time-reversible proces functions are tested for membership ia the original pro-
model physically relevant signals. Consequently, Gaissi cess. As we shall see, a process's temporal symmetry cannok
prmcmes would seem to be imprecise reprentations of be judged from its spectrum. When viewed from the per-
physical measurements. spective of familiar Gaussian-based random process prop-

erties, this sample-function pcp.rty may seem subtle since
I. INTRODUCTION power spectrum measurtuents cannot determine tempo-

The Gaussian prvce i unquestionably the mnt prevalent ral symmetry. However, the process's temporal symme-model oGioth sngp s and nose it ci•o n unation, cmo ntrol, try rstricts what amplitude distributions the process may
modeofbt signal sand nohseiory.Formanyreasons, cothisrol, have. Bemuse physical laws tend to plu-e constraints on
anud signal processing theory. For many resn, th pr- t~mible signal's temporal properties, we use these to pre-

cem yields analyticaliy tractable results for a wide variety diet what amplitude tbutios p pwssibh e tor-

of application problems. Several important signal process,- dthay ape d

ing tools based on the Gaussian model are the matched n may hav

filter, the Kaoman filter, and the Wiener filter. Despite
its theoretical importance, the fundcmental equations of II. TEMPORAL SYMMETRY

physics impose few constraints on the amplitude distribu- A stationary process {X,, E9 T}, is temporally •rminct-
tion of noise =d, to the authors' knowledge, the stationary rvc it for every t...t., for all n, the random vectors
Gaussian stochastic process does not emerge as the solu- {X,, ... X-.1 and (X4-1,... ,X14-..,Vte have the same
tion of any physical problem. The Central Limit Theorem joint probability distributions (4,14). Thus, for a tempo-
(CLT) stands out as a possible exception to this suppois- rally symmetric proct, time-reversed and delayed sample
tion. However, the convergence of independent superim- fune, ,u are also sample functions of the otiginal proces.
posed processes to the Gaussian is •mtotic an infinite With this definition, temporal synmetry is a stationary
number of proces-es does not exist physically and the CLT process property having no grdatiom: a process is tem-
cannot be used to justify the Gaussian model on physical porally symmetric or it's not- Fbr example. cinsider a
grounds- tero-mana. Gaussilo prno for all such processes, the

Pecetly, researthr have realized the prevalence of covanance function completely charocterixes the joint am-
demorstrably noo-Gaumsian noise in physical measure- plitude distribution. As a stationary proces's coftriance
mentu 6,T) and signal pmecsing research has increasingly function depends only on the ,,gaituae of the diffisan•

'Supportsd by posst NOOWO1449-J4152 (tow tks offa of NavW 'W "k* *000490i~k LO 44MIN aA0aasq .apM d disiAOb-
~bo (I±)indi ia Games.
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between the two sample times--C[X,,X 1,J = f(tt - t2l)- r .. .--
be the process temporally symmetric or not, the covariance
function is a temporally symmetric quantity. Consequently, Physical Measurement
all stationary Gaussian processes are temporally symet-' System System I

ric Weiss (14] showed that the only discrete-time linear
process--stationary time series generated by pasing white L Thermodynamically Close
noise through a linear, time-inmriant system-that could
be temporally symmetric is the Gaussian. Consequently, Figure 1: The meaurement system extracts information from
all non-Gaussian linear processes must be temporally asym- the physical system. We consider the two together as thermody-
metric. Nonlinear proceses may or may not be temporally namically closed, not interacting with other systems.
symmetric (4]. No basic result akin to Weiss's for catego-
rizing nonlinear processes is known- III. THERMODYNAMICS AND

MEASUREMENTS
Because the covariance function is by definition a tem- Virtually all signal processing algorithms are applied to

porally symmetric quantity, a process's temporal symmetry measurements taken from some physical system (figure 1).
cannot be examined using second-order statistics, such as We presume that the measurement process is not intended
the power spectrum. To illustrate this point another way, to modify the physical system. Instead, the intent is to cap-
we can manipulate the temporal symmetry (and the a- ture some time-persistent aspect of the system. We thus
plitude distribution as well) of a nou-Gaussian procemby expect to mod - the measurement's "random" components
linear operations that have no effect on th e power spec- as a stationary process. Non-statistical components are of-
trum. Pass a non-Gaussian process through an all-pass 61' ten present too. For example, the physical system could be
ter, which by definition only affects its input's phase. This a communication channel whemr the signal represents dig-
phase change mod' 6 es the dependence structure of the in- ital data and the random component is additive channel
put, resulting in an output having a diferent dependence noise. The signal reception process should not, in engineer-
structure an I a different amplitude distribution. Thepoer ing jargon, load down" the transmission system, continu-
spectra of the Biter's input and output are identical since ally changing its characteristics. Under thee aumptions

the power spectrum is insensitive to phase distortions. The on the measurement proces, we can justify using station-
Gaussian process's insensitivity to phase may se - ary stochastic models to describe the noise, enabling us to
physical", a notion we are about to argue for. Quantities derive appropriate signal processing procedures.
sensitive to temporal symmetry uar the bispectrum 18) and The effects of measurement on a physical system can be
the conditional meam [4,11] quantified by considering thermodynamics. The key con-

cept is termodiyamic entropy. Loosely speaking, a sys-
Other aspects of a signal's dependence structure are a- tern's entropy S is defined to be k In P, where k is Boltz-

fected by the amplitude distribution. Consider all fk.st- mann's constant and P is the number of accessible micro-
order autoregressive processes parameterized by rhe pole scopic states The Second Law of thermodynamics states
location c. Given a Gaussian amplitude distribution, any thi:t a closed system's thermodynamic entropy can never
value of a (corsistent with stability criteria) is possible: dczease and that entropy increase are proportional to the
all Enrt-order dependence structures arm compatible with work extracted from the system.
the Gaussian amplitude distribution. The Gaussian is not
unique in this regard; for discrete-time signals, all ampli- AS > 0 and AW = TAS
tude distributions in class L are compatible with all first-
order dependence structures (1!1. Among these are the Modern studies in the .iermodynaxics of cornputation
stable distributions, the Laplacian, and the hyperbole se- have cla•ufied this classic, but ill-defined, concept of entropy.
cant [101. For other amplitude distrnbutions, not all vusM One particularly illuminating definition due to Zurek [151
of a are compatible- Perhaps the most striking is the uni- expreses thermodynamic entropy as the sum of two terms.
form amplitude distribation; first-order AR processes exist The first is the Sano entropy H = - Eplogp of the
that have a uniform amplitude distribution, but the param- probability distribution of the system's state; the second is
eter a can only equal ±1/2, ±1/3..... For this and other the asorifArnic eatropy K defined as the length -f shortest
n, .- class L distributions, the amplitude distribution's form possible description for what is known about the system2

has a direct impact on its dependence structure. The algorithmic entropy might be defized as the logarithm
of the thortest possibie Turing machne program needed to

For our purpose, we strms the close coupling between dscnbýe what is known about state: Thus, the first term ex-
a process's temporal dependence structure and ia ampli- pre-ses what any device or peron does not "kr'w* about a
tude distributio. If we can show that a process cannot be sysnt's state--the uncertAinty---and the second enrxresse
temporaly syml etric, we must conclude that it cannot be 'We baw a-tttaxp to rake tk'. wus of *zt-gy &"w amag tb4

Gaussian. This constraint allows us to explor the amp4- .aow atropy de.aritoma Tho piper is mom cascersd %m tb coam"
tude distrib6-th- of processes gove•wed by physical laws by tiam detaik Is L. cad. twb =At be mdlti#5.d by Sakusms.A's
comiderig t-,porzl dependence structures. eaoat "ad the Plo .lA , 6& ha" , c atvsJ haL
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what is knowa. measurement does necessaxily not "loac down" the phys-

S = H + K ical system and the resulting measu.rements can be well-
modeled by a stationary process.

Note that this deinition is "human-free:" a person need Be that as it may, the measurement process cannot be
not be present to make the measurement; devices such as reversed for two very different reasons. First of all, the
A/D converters are encompassed by these dfnitions. work expended in making the mesurement cannot be re-

This definition for thermodynamic entropy clarifies dis- turned by undoing the measurement process: entropy has
cussions held over more than one hundred years about increased and cannot be decreased to provide the neces-
Maxwell's demon [1,2,3,12]. In 1871, Maxwell described a sary work. .Secondly, and most importantly, to the degree
"demon" that, by measurn,:r -nolecule positions, could en- that measurements are directly associated with certainty
able a machine to do work w: .out increasing entropy. Only about system state, the time-reversed sequence of me&-
by recognizing the role of measurement has the demon been surements cannot be equivalent to a measureme.2t sequence
reconciled with the Second Law of thermodynamics. Orig- from the physical system. Such temporally reversed mea-
inally, Suilard in 1929 [12] and Brillouin in 1962 (3] argued surements would seemingly represent undoing the measure-
that measurement of any physical -rariable must be accom- ments, thereby corresponding to increasing system uncer-
panied by changes in the information content (proportional tainty, while mrantaining constant knowledge about state
to the Shannon information) of the variable. This meaure- (after all, the measurements are in hand). Siynal thus ob.
ment translates uncertainty in system state into certainty tained by physicsl mea.surements cannot be temporally sjym.
and thereby increases the algorithmic entropy. Using mod- metric. This critical fact obviates any stationary stochastic
ern terminology, they incorrectly argued that balance be- process model for signals or noise that is temporally sym-
tween state uncertainty and knowledge could not be main- metric.
tained (AH > -AK), and they concluded that work must For these physical reasons, Gaussian random process
be performed in the measurement process with a concomi- descriptions of memured signals would seem to be an ab-
tant increase in thermodynamic entropy. This work would straction without a physical basis. To recap, all station-
exactly balance the work seemingly provided by Maxwell's ary Gaussian stochastic processes are temporally reversible;
demon and thus uphold the Second Law. However, these re- processes modeling measure.-nents cannot be because of the
searchers did not explore whether a more efficient technique Second Law. Thus, non-Gaussian processes provide the
existed for performing the required measurement. Based only viable model for physical measurements. However,
on his work on reversible computation, Bennett in 1982 (1; temporally symmetric non-Gaussian processes are also in-
showed that balance between AH and AK could b- main- appropriate; because of Weiss's theorem, such processes
tained theoretically and that measurement did not nrce3- must arise from nonlinear models. Temporally symmet-
jarily increase total entropy. Bennett noted that the demon ic non-Gaussian processes that describe physical measure-
must return to its o-iginal state to initiate another cycle ments can be produced by both linear and nonlinear mod-
of measurement and work. To return to the original state els [11]. Our interpretation of thermodynamics has not
means discarding the just completed measurement; destroy- produced further restrictions on possible random process
ing the certan,'y gaiaed by measurement takes work and models for measurements.
this work balancei the decreased algorithmic entropy [15].
Thus, a detailed analysis of inforu.tion trazsfer explain IV. ISCUSSION
why Maxwell's demon does satisfy the Second Law. Because of the Second Law of thermodynami-s, measure-

In most physical cases, performing a measurement does ments convey the conversion from information-theoretic un-
take work, meaning that the measurement system consumes certainty to algorithmic (mewurement) cetainty. Tempo-
power and that the thermodynamic entropy of the corn- rally reverinag the time series could not represent the same
bined physical and measurement systems increases. Ideally, mea.surement process as the reversed time series would sug-
if sufficient care were takme in the measurement process gest a physically impossible situation: the continxIal t-a-
and the detailed information gleszed aas never destroyed, tropy Utraformation from its algrithMic to its uncertan
overall system entropy would be coast-ant. Since such ideal form without a net entropy increase. Based on these physi-
circumstauaes rarely exist, mreasurement in moart if not all, cal restrictions, the most accumte stochastic process mcdels
phtysical Iyvlems is not tAerModyrtamincll•y r•e•ri•le: once for data are temporally Lsymmetric o*e

the mexsurement procre has increased thermodynamic en- The use of Gau.sian processes in signal proce•.ang would

tropy. the measurmnent cannot be undo" prcisely (also- thus appear to ret on weak grund. justifying considera-

ritnrmc entropy precisely traded for uncertwnty). Accord- tion of alternate, ncn-Gaussian signal pom•sing strategies.
ing to this view., a sequence of m&&suremz ts, which we The utructure and properties of non-Gaussian stochastic
express by a scalar-valued time series X(f). are most of- processes need to be understood bere ph)ysmlly relevant
ten obtained by increasing thamoedynamic entrupy. Thee subsets of this c.las can be selected& Once the process class
incre•ses do not necemsily mean that the entrWpy of the that acm"-itely models tmesurement has bee defined, th*
phys-cal system being messured has incre•ed. Tbeorvti- signal pr--iessor would naturally seek signal proce•ing al-
cally. a prwrt uncertainty can be exchanged foW measure- gc-ithz.s th•t cowud exploit the structure impoted by the

ment cetainty withot increasing eatropy. Coneuently, mftsu'retat &s-d best glean the ormsaioa cotaned i
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the data. Unfortunately, optimal non-Gaussian signal plo- (11] p.S. Rao and D.H. Johnson. Generation and analysis of
cessing operations are not equivalent to the Gaussian once. non-Gaussian Markov time series. Submitted to IEEE
Detection theory provides one example. The matched fl- Trans. Acowtics, SpeecA, and Signal Proceming, 1990.
ter applies only to Gaussian noise problems; optimal detec- [121 L. Szilard. Cber die Entropieverminderung in einem
tion for non-Gaussian noise demands alternative structure, thermodyuamischen System bei Eingriffen intelligen-
Furthermore, the analytic simplicity provided by the Gaum- ter Wesen (On the decrease of entropy in a thermody-
sian process rarely carries over to non-Gaussian problems. nmmic system by the intervention of intelligent beings].
Few statistical signal proceasing algorithms have been de- Z. Phys., 53:840-8&5, 1929. Translated in Quantum
veloped that Lre tailored to the amplitude distribution as Theory and Metureme-at, edited by J.A. Wheeler and
well as to the temporal dependence structure. W.H. Zurek. Princeton Univesity Press, 1983, p. 539.

We couid apply Gaussian-based algorithms to non- [131 Ri-. Urick. Principlej of Underu'iair Sound. McGraw-
Gaussian problems. Taking another example from deter- Hill, New York, 1975.
tion theory, oue could use a matched filter (linear) detector [141 C. Weiss. Time ,eversibility of linear stochastic pro-
for a non-Gaussian noise problem. However, this filter's ceases. J. AppL Prob., 12: 831--83t, 1975.
unit-sample response is not proportic'nal to the signal a [15, W.H. Zurek. Algorithmic randomness and physical en-
it is for Gaussian situations [9]. Furthermore, the per- tropy. PAys. Rcu. A, 40:4731-4751, 1989.
formance for the optimal linear detector can greatly rsr-
pans that designed for the Gaussian problem. How much
the optimal linear detector degrades system performance
when compared to the optimal one is not known. We need
to specify how to vary Gaussian-based strategies for non-
Gaussian problems and to quantify the losses incurred when
Gaussian-based systems are used in physical situations in-
stead of those keyed to physically accurate non-Gaussian
models.
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NONPARAMETRIC PREDICTION OF NON-GAUSSIAN TIME SERIES

Y. Kang Lee Don . Johnson
Department of Electrical and Computer Engiueering

Rice Un•versity
Houstoa, Texas 7T251-1892

ABSTRACT as opposed to the qutalittive amumptions made in non-
In this paper, we apply the noaparametric kerne predictr parametric estimatioa. Effectively, noaparumetric predic-
to the time-series prediction problem. Bocause nonparamet- twa makes only modest assumptions, making it amenable
tic ptediction makes few asumptions auout the underlying when modeling uncertainties are pervasive.
time series, it is useful when modeling uncertainties are per- 2. NONPARAMETRIC PREDICTION
vasive, suck as when the time series is non-Ganmiaa. We
show that the nonparametric kernel predictor is uymptot- Based on observations X1, X2 .... , X- of stationary time
ically optimal for bounded, mixing time series. Numerical series {X.}, we want to estimate Xv+l using a p" order
experiments art also performed: For the nonlinear autore- predictor: Based on the most recent p observations, nota-
gremive process, the kernel predictor is shown to greatly tionally summarized by XN = .XN,.... ,X..-,+I], estinate
outperform the linear predictor; for the Henoa time series, XN+S. That ia, the predictor of Xv 4 l can be written a
the estimated predictor closely resembles the Henon map. Xjvia = i(XN), where f(-) is some function that maps RP

to 11L This functioa is usually unknown and must be es-
timated from data as well. This pape! dcvs not addrcs
the order determination problem and a.sumes that predic-

1. INTRODUCTION tot order p is known. The interested reader can refer to

Tune-eeie. prediction is a problem frequtntly encounterer' ill for &an order selection ter4'nique based on nonparametnit
in many branches of science and engmieeriag. In this pro'- regression.
lem, we would like to predict future values of a time series If the mean square error (MSE) ctiterioa is used, the
basnd on its prsenet and previous observations; consider, for optimum P" order predictot of Xr..a is the conditional
example, linear pr • dwhtion In practice this poedtin•, pro- expected vlum e of Xre gives Xx ÷t ith
ce couists of two steps: estimetio of the predictor fow
all available observations, fo3owed by predictioa of a future X*IL!X 7 . jX,,].
time-.ries value by rvaluafing the tstimtted predictor us-

ing present observations. Classically, tie estimation of the The conditional expectation above is a random variable
predictor has beet simpified by the assumption of a par*- measurable with respect to the *-&lebea of [X, ...
motwu model of the time sere, so that thr. optaman predi- X-,, 1 1 Iad cam therelor be expressed
tot can as be described pasrametsically. As a "ealt of this
ampLicauon, the prictr estimation pocus is gretly ElXN.a6X,] - ,(XX).
reduced to the task of estmatlig only a fisiti :-ibr of
parameters. la the fA~Mili can of linar prtdictioa, we where r() is a function that maps from ERP to IL We call
amume the signal, eag., speec, to be linear tuto-regremive r(-) the C*"' 'tatei mesa
(AR). The corresponding predictog is then lnrmed by arti- 2 Kern1 Predict
Watin, often very effloestly, eS., via Levisoa's algoei"t.a
the coelietsi of like lisear modeL npat i.ata.tecaiitlma2iuto s-a

,.omprantw' ppod,€ n provides an alternative to the known and must be estimat fMM data. In %bs etstimaý
dcasal method, of linear ad hige-order eict•i• wke ioa procte, we atarch for a zapptmg that best d&mSibes
patasetnc specikc"tIon L the time W i aOthe *a- the uaelationship between raaowm vector X. and ran-
avxaiinkai or dmLiona Thý approac.h aaly astuala %ka't "L dozzrn vnabLt X.+# 1 ha~ss their aotmrymtioas I X, X'* -).
mOdEld'MribMg the tiWmr40 Lt sooth. Whereas &p rP - (X,..X,4 3) .... •XW-1,X.. ) (we kave Abbreviated vec-
m0etrc it is lobal and 4"p0ns al of state spa. a pkr- W (Xr.. , X.- as X.-). We shall Mier to e&ch ob-
mettic esti•mato t data locally by tak.g advastnge a( servaiou vecto X. as a predoctr rector and emac "saler
the smoothnwe cooditir' The dam of pssble rdatwo- ervratbon X.,, as the r*spose corrsoding to ptrcd•-
sItps La oeparametnc c•. ,aaoa is equivalet to the dam to vector X..
of smooth fuactosm, sib is dearly 'oo lure to be pa- A parmetne metkod etch as hleur prediction m mm
ratetuaise. Is a oewe, we may contrast pe*maetner aa that r(-) is lwneai. thus consrtrnuati the esss..Mte to be Us-
wouparametrifc Xzs&!-aW by the ammftemaa thty aga e arr . h b,.104aParametnc method does ot coustraus the

1The parametric method requares quewtast.w: cation form of the estmate. By taking ad.vant&ge of the saooth-
_ _ saw of r( ), yte sospasametrr kaeirte rtpvseson esh•tos,

"*Wwk ampparned in pa by the ONR ut r 17*a N=* the sepwramettuc itimatat of the condiat.oal =ea fun4C-
"" 31ta - at a point x E R' conssts of Zocaly averagsg the

To appear ia Proc. ICASSP-9. 1 I IEEE 19"3



* *Tine ZuM SM Rep'e0o Ida~

4 .3 .2 -1 0 i ~ 3 4 3 3 4
X40) or X X(R) or I

Figure 1. Scatter Plot and Kernel Regression Estimate Figure 2. Over-smoothing and -&-e~smoothing

responses X,.+, corresponding to those predictor vectors responses within a i~rifinitesimally' a- 41 wtghborhood of
within a neighborhood of x:. the conditioned predictor irecte

Completing the prediction p, es, we e':-Iuatet'he kernei

E'- K . +1regresnion estimator f (-) at thp. ýresens predictor vector x
i(x) = .P ~ (1) Xav. We can the> writef' kernel predictor of Xz,+a u5

"PJ~ (AIN XNs (X.y). 2

In the numerator of (1), fernel K( ). &,long with bandwidLA 2.2. Raadwidth Selection
Ape, play- the role of a weighting function %nd Aluga a Sellecting &a appropriate bandwidth is crucial for good es-
Weight to each response X...4  based on the distance . k timates. If thie l:,andwidth is too large, over-smoothin& oc-
tween predictor vector X.. and x- K(-) is generally positive curt. Likewise. if the bandwidth is too small, the resulting
and decreases from the od-iua; oae example is the znultiva~ri- esimate is utider-smoothed amcd jagged. See Figure J.
ate au~s'-ian function. Hence, responsei corresponding to To be consistent with the no~iarametzic nature of the
predictor vectors dlose to x &re weighed roore heavily and kernel predictor, the *election of the bandwidth sh"Idd be
have more effect than those with predictor vectors afar. 'I he IMSed on inftormation inherent in tle &ata and not on 3 pfi-
bandwidth parameter Aj, has the tole of controlling the ex. ori, pcasibly inacura~te, &Amniuptions. Such a aarie
tent of the I" al nigibothood about x. A large baadwidth technique, called crosi ocilidatio4N kts gained wid-e-razge
&.1.ows more risponsea (correponding to predictor vectors Support among stat~isticians and time-sci-es analysts. D~e-
&round x) to be averaged, &ad a small bandwtidt has tie fine thic aeoe-~a regression estimator ir..4x) as Uo-
op-,osite elect Choosing an appropriate bandwidth is cru low*:
casl ior a good estimate; this is diocusar, in the next we-
tion. As a general rule, tie bandwidtL will decrease as X M..:1
incrtases because local volumes will twfled =or* densely K__________
when more data become available. The desomasat-o is (1) i~.,A(X) -

Simply &met to sornaalite the wcighting Qt the reMpoSeSIM (
.As x vrarieo within its domatn. tho kernel cotiviator can

be viewed &@ a moving avviage is predictor-vtctor *Wae, The appropriately named lveo-utestrasiator i.)is
anOpposed to the V=nswa 'ione of a Moving average in the kernel mreusvioa estimator of (1) computed without 4s-

time. Figure I Show, thet scatter plot (X...1 versus A.) in.3tke ;air (1X..X,, 1 ,Tke cros ersoldesron afuction CV'()
of 'V 100 samples of tie rust-,oadet noflinear autqrnes-. is the samp'e peiCXiioe ercwr *no& the ievo.-~testi-
uret (NA R(1)) Uam series matot as t-he peedictot:

X ,-2sj&(X..) + 14.+; 1 4'i. e.j- .. (O. 1)X1

Tile true conditioval exr-ectatios r(x) =2asi~) is shown CV{A-J! E, -AX) -0

by the dashed cnrve. Abe' *kow* is thme kernel reptacaa
estimator i(r) inuide the interval !- 13.01; it as co.7npstei
mung a Gaamsaaan meintl wt a bandwiddth of A =0-23. The bandwidth i that nunamttft CV(-) is Selected aad usedJ

At z -2.0, we show low the tvaposte are wisdovmd to compete the regr~ast estimatcar i(+) This manaimaza-
to pi'oduce the corresponding estimate, as itdicattd by the tios is performed4 over all poasiblc- At valne, &ad tY'e con-
asterialt- The ketrael estimator rep-pe ste a natural and is- SStRain Ott foe A MaY r'Nvire soMe 1%biMctn1Y %' an LJ to
tvitiv*Cwe -Uar of the couditicuaJ Me anunctsoa becanie redmce tit azro-uxt of computations. If i(-) were used i2-
the conditioai &aean is nothing bet the local avea~ge of tle $Lead of i.., ) to compete CV(&) -at can be easiy shown



that CV(h) is minimized at A = 0, yielding a useless solu- MAXaT,.s,•

tion. The use of fi,h(.) effectively thwarts this singularity. 4,

It is important to note that h is derived completely from 2

data and is consistent with the nonparametric nature of our
prediction method.

A . CONSISTENCY RESULTS

As we have already mentioned, it is difficult to specify joint
distributions of non-Gaussian time series. To analyze prop- 20 40 do so 100 120 140 10 IN 200

erties of estimators, however, certain specifications on the
dependence structure of these time series must be made.
We therefore select a very general specification, called a Figure 3. Snapshot of NAR(2) Time Series
mixing conditsors (2], for the time series we analyze.

Theoretically, the two estimators that we have so far dis- errors, but the rate at which the errors converge will be the
cussedoaretdcalerent.The ker estimatorsthatwehavesofar d same. Thus, bandwidth values that work in theory may

cussed are different. The kernel regression estimator f(.Q not be obtainable in practice. Cross validation can provide
is an (pointwise) estimator of the conditional expectation somewhat of a bridge between theory and practice. In the
function r(x), whereas the kernel predictor F(XN) is the i.i.d. setting (the usual setting for regression analysis), cross
estimator of the predictor r(XN). We need to elucidate validation is asymptotically optimal for the kernel estima-
the distinction at this juncture because consistency of one tor, but the rate is slow (6]. Unfortunately, little is known
estimator does not imply consistency of the other. The dif- in the time-series setting about cross validation for either
ference here is akin to the difference between pointwise and the kernel estimator or the kernel predictor. This remains
norm convergence of a sequence of functions. Because our
impetus is the time-series prediction problem, we should an open area for research.
concentrate on the analysis of the kernel predictor. Point- 4. EXAMPLES
wise consistency of the kernel regression estimator for €-
mixing time series (and others) has been shown [3]. See Nonlinear Autoregressive Process
also (4] for consistency results of the nearest-neighbor re- Consider the following second-order nonlinear autoregres-
gression estimator. sive (NAR(2)) time series.

Next, we need to determine an appropriate mode of sta-
tistical convergence for the kernel predictor. Almost sure
consistency can be found in [3]. However, this does not X,+I = 0.91 + 4(X X, )2 - X +) + I

imply that the kernel predictor asymptotically matches the 1 + (X.- 1 - X,) 2  
"+

performance of the conditional mean. For this reason, we with W. - i.i.d. N(0, 1). This time series is a gener-
believe that it is inappropriate to analyze the "B. or in prob- alization of the well known linear autoregressive process.
abilityconvergence of the kernel predictor. Instead, it would Unfortunately, the nonlinearity makes X. very difficult to
be more appropriate to analyze its L2 convergence. Lee [5] examine analytically. For example, we do not know its
has shown that for bounded 4, p, and cr-mixing time series, (scalar) amplitude distribution, let alone its joint distri-
the kernel predictor is asymptotically optimal in the sense butions. In fact, we do not even know if it is station-
that N 0ry' Because (1 + 4(zi - zo))/(1 + (zi - zo)2) in bounded

E(XN) - r(XN)] 0.for all (to,xi) E R 2 , X,, has finite moments. The scalar

The rate at which this convergence occurs depends on the value 0.9 is used to normalize its variance to approximately
rates at which the mi.ang coefficients and bandwidth con- 3.0. Its observed mean value is zero. See Fig. 3 for a
verge to zero. For example, for an exponentially #.mixing snapshot of 200 sample values. Even though the station-
time series (i.e., its mixing coefficient Oit is proportional to arity of X. is questionable, its conditional mean is in-
ak, a < 1), the kernel predictor converges at a rate of variant to time index n. Because W. is independent to

X,,,, m < n, the conditional mean function is simply
E[f(XN) - r(XN)]2 = O(= h + loq2 N/(Nh")) (3) r(to,zi) = 0.9(1 + 4(xi - zo))/(1 + (s, - so)') for all n.We test the kernel predictor at sample sites of N = 200,

Thus, consistency occurs if hAN o and (NhP)/log• N • 500, 1000, 2000, and 3000. For each sample size, cross vali-

oo. Using (3), the convergence rate can be optimized by dation is performed to select the appropriate bandwidth.

taking the bandwidth to be The kernel regression estimate at N = 500 is shown in
Fig. 4; the liear estimate is shown for comparison sake.

hN,.,, OC (NI log 2 N)- 1'/(
4 "• 2  (4) A Gaussian kernel with a bandwidth of i = 0.40 is used.

The kernel predictor is then tested against the next 1000
Convergeuce is faster fut time series that have weaker de- samples. It is evident that the linear predictor cannot
pendence structures (fast converging mixing coefficients). If adequately capture the nonlinear relationship and, cozie-
the dependence is too strong (mixing coefficients converging quently, performs poorly when compared to the kernel pre-
too slowly to zero), the kernel predictor is not insured to dictor. At N = 500, the kerel predictor has a MSE of
converge. The most rapid convergence occurs in the trivial about 1.1, compared with 1.9 for the linear predictor and
situation when time series samples are completely indepen- 1.0 for the optimum predictor, or about 95% of optimal
dent. (because X. has a variance of 3.0).

It is important to note that the cousistency result above Chaotic Time Series
".specifies only the bandwidth rate, that are admissible. For
example, if hN satisfies (4), so does HhN, for some non-tero The kernel predictor can be applied to time seriet produced
constant H. Clearly, the two sequences will yield different by deterministic difference equation. It is likely to perform

3
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Figure 4. performance Analysis for NAR(2) T-ints Serie" Figure 6. Henon Time Series: Scatter Plot, Henon Map, ?fld

well with these time series because no noise is present. A Regression Estimates

special case of such a time series is one that is chaotic, of dimensionality,* so called because nonparnmetric meth-
Consider the Henon time series (Fig. 5): ods require a large amount of data for dimensions higher

than about three (p > 3). This shortcomning needs to be
X.1=I - 1-44~ + 0.3X,-,. overcome before problems like target tracking and speech

modeling can reap the benefits. provided by nonparametric
with initial conditions X.. =X = 0.0. prediction.

In the came of chaotic time series that are produced
by noolueear iterative equations, nonparametric prediction

1.3 performs well because no randomness is present in the re-
sponses. Because little averaging is needed, dimension~a~lty
effects are not as severe as for stochastic time series. Non-
parametric prediction seems to have much potential in this

ara[1, T, SI.
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Generation and Analysis of Non-Gaussian Markov
Time Series

P. Srinivasa Rao, Student Member, IEEE, Don H. Johnson, Fellow, IEEE, and David D. Becker, Member, IEEE

Abv-Cmorrtlated non-Gaussian Markov sequences can be hibit different properties in the forward and backward di-
considered as filtered white noise (Independent, identically dis- rections of time quite unlike Gaussian processes. In the
tributed sequences of random variables), the filter being a non-
Howa system in general. We discuss the applicability of linear sequel, we shall refer to such proces3es as being ;empu,,-
models and nonlinear methods based on the diagonal series ex- rally asymmetric. 1 The inherent symmetry in the defini-
pansion of blvnrlate densities for analyzing this system. Non- tion of correlation function makes it insensitive to tern-
Gaussian sequences exhibit different propertlet in the forward poral asymmetry and reduces its ability to captare tht.
and backwprd directions of time. We explore the connection to dependence structure of a non-Gaussian nrocess. Whfat
system modeling of this temporal csyn•ith-y and some of its
consequences. As in example, we analyze a first-order linear aspects of non-Gaussian sequences are then important in
autoregressive model with hyperbolic secant amplitude dstri- specifying their properties? How can they be exploited in
bution at its output. signal processing algorithms? A key issue i•t developing

analysis tools that can be used to ans, ar th,.e quesý:ns
is how to model the generation of non-Gaussian signals.

I. INTRODUCTION That is, given a specification of a non-Gaussiai, signai,

'rTHE signals and noise encountered in the signal pro- how can it be produced by a possibly nonlinear system

X cessing environment (e.g., ocean acoustic noise 1191) operating on an elementary random sequence? Gaussinn
asignals can be generated by passing independent, identi-are often not Gaussian. Be that as it may, many signal cally distributed (i.i.d.) Gaussian time series through theprocessing algorithms arm based on ',he assum ption &th a pp o rael naty t m o o - a si n sg as r
the signal, or noise, or both are Gaussian. Even when the appropriate linear system. For non-Gaussian signals, are
appmrofiatc r: r.-Gauwsian amplitude distribution is used, nonlinear systems necessary? If so wnen?
the samples are assumed to be independent or at least un- Before attempting to answer these questions, we make
correlated. The performance of algorithms which ignore tsignals are (strict-sense) stationary. Second, we assumethe non-Gaussian nature of she input andwor the depen- tha: die signal: ar Markoviari: the generating systems of
dence structure is seriously limited when the algorithms such signals arm characte,-ized by a small number of
are inappmpriately applied. A common way of account- stat" Making ase of the relatively new theoretical
ing for the dependency of non-Gaussian data is to model notion of tesMporal symmey, we wir l discunss the suit-
the procem as a pointwise transfonnation of a correlated ability of linear models for non-Gaussian processes and
Gaussian process. Although this mathod facilitates easy then propose a technique for developing nonlinear models
generation of dependent processes, it yields an analyti- for a class of these p oroe vses.
cally complex dependency structure which is insufficient
to describe the possible range of dependencies I181. De-
velopment of new algorithms which take into account the II. T).AL SlITR"L
non-Gaussianity and correlation structure requires an in- All stationary Gaussian processes are symmetric with
depth study of the properties of non-Gaussian time series respect to the (discrete) time axis: a time-reversed sample
and how they can be modeled and generated. function X, of a Gaussian process is also a sample func-

The correlation function is inadequate in capturing the tion of the same process and is thus statistically indistin-
dependency structure of a non-Gaussian time series; only guishable from it. Non-Gaussian processes do not neces-
the multivariate Gaussian density depends solely on the sarily exhibit this symmetry. For example, sunspot
covariance matrix. Another reason for this inadequacy is number data collected since the year 1750 hayv been noted
the intriguing fact that non-Gaussian processes often ex- to fall more rapidly than they rise [3]. Neural discharge

patterns have also been found to be asymmetric with re-

Maasacnpt. mc-ved Augu(t 24. 199D. reised Mar7, 1991 This,,,rt spect to time [14].
w" spp- by NIH grnMt ROt DX231 and ONR G.W N000014-.W Definition: A stationary process {X. n 0, ± 1,

"-3152. is temporally sypfmetric if the random vectors {X.,. X,,.
P. S. R•i and D. H. lohanson at with the Dekpptrrem of Elecuicl a&d

Computer Engineteiag. Rkic Uaiventity. Ho . TX 77.51.
SD. &D. kete is with Ceomral Electric Meda Sysim. Wa•kesha. WI. 'The term tiaw rewrsibility bza bem wed it. the fliwe•u. See for ,•-

IEEE Log Nrnober 9106027. ap l1121. 1171.
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•Y. and {X, , X_ • XJ,} have the same joint asymmetry of the time series. Joint asymmetric averages
distribution for all k and ni, I s i 5 k [32]. (e.g., E[XVX.1) have been suggested for this purpose [61.

Temporal symmetry of Gaussian processes follows Higher order spectra have been shown to be suited for
from the fact that the joint distribution of the amplitudes parametric linear system (ARMA) characterization (24].
of a stationary, zero-mean Gaussian process is completely The statistics having possibly more utility are the con-
hpecified by the covariance function, which is by defini- ditional expectations E[X I X. - 1] and E[X - I IX] as they
ion symmetric for all processes, Gaussian or not: can be used even when the generating system is nonlinear.

E[X-lX,] = E[X,,,_XI] = E[X_,X_.,] follows from These quantities, which we shall refer to as the "for-
stationarity. Weiss [32] showed that all autoregressive ward" and "backward" conditional means, are not in-
moving average (ARMA) non-Gaussian processes (i.e., herently symmetric with respect to their arguments and do
dtose that satisfy a linear difference equation of the form provide information about the dependency structure of the
X. = E•= I a1X -i + E•.0 bjW._j, where { W.} is an i.i.d. sequence: if these two statistics are different, the se-
sequence), with the exception of purely MA processes (a, quence cannot be temporally symmetric.
= 0) with even or odd symmetric coefficient sequences, Consider, for example, the joint distribution
are temporally asymmetric. Hence, the only temporally
symmetric linear process is the Gaussian. Nonlinear non- p ,(X, y) - + ) + 04 - ,-
Gaussian models on the other hand, may or may not be a
temporally symmetric. The importance of the concept of -S X, y .

temporal symmetry stems from this close association with Clearly, this joint density is asymmetric while its margin-
the linearity/nonlinearity of non-Gaussian models. als are uniform over [- ½, b]. Its conditional means are

Clearly, to enalyze fully the temporal symmetry of a calculated as the means of its two conditional probability
stationary process, we must deal with joint distributions densities pxjIx.,_ (xIy) andpx,..x, (ylx). As the marginal
of the ampliiudes of the process at arbitrary times, not is uniform, the conditional densities have the same func-
simply second-order statistics. Since we are dealing with tional form as the joint distribution. Respectively, the for-
Markov processes, it is sufficient to consider bivariate dis- ward and backward conditional means are found to be
tributions (more on this in the next section). The bivariate
distributions of a temporally symmetric process are sym- E[X. 1 _ -] )ý X.
metric functions:

E[X,.jX.] = 2X, mod 1 -

PZJUxX" .v) = px.,.x.. Y)' The forward mean is affine while the backward mean is

"pxa(X, Y) = PX(Y, x) discontinuous; this difference clearly demonstrates the
temporal asymmetry of the associated process if it exists.2

-ing temporal symmetry, stationarity, and a simple reor- The other possibility, namely the identicalness of the
dering, respectively. On the other hand, the bivariate dis- conditional means is, however, insufficient to prove the
tributions of 'mporally asymmetric processes are not temporal symmetry of the process. After developing more
svmrr -tnc functions. This fact may appear to be counter- insight into the structure of non-Gaussian Markov pro-
intuitive since the m, -inal amplitude distributions at any cesses, we shIll return to the properties and applications
two time inst-its must be iden'kil due to stationarity: of conditional nic.ans.

-. ,&j_.Xx7)zy)y zM. NON-GA.,SSIAN MAaov PROCESSEyS

00 -Go A random process IX,} is Mth-order Markov if its con-
ditional probability densities have the property

These equations must Mo16 whethe: the joint amplitude
distribution i; symmetric r not (i.e., the process ýs tern- PJ,1.-.Z.-3, " h.

pirally sym'netric or not). Several ;xamoles of asymmet- .. ,(Xl. ,Y) (I)
nc joint distributions with equal matrginals are given
throughout this paper. A c-)niinuous-time example of an for all n. If {XR} is also st-tonary, these conditional den-
asymmttric Mark-e process (constructed using asymmet- sitic- do not depend on n. The process {X.} is said to be
tic bi. ariate densities) iS given ini [321. .ompleetly specified if all joint densities of amplitude- at

The measurement of tho joint dist,.bution function is differt.,t instants are known. It follows easily that station-
highly data intensive, and hence the auestior. arises as to mty Markov processes are completely specified by the
which quantities are maximally sensitive to the stat;vical conditional density fur'm:on given above. If the process
prap:rtits of an obscrved sequerre, pavicula~iy its tem.- isfirut-order Markov. _ conditional densities can be ob-
poral symmetry, and how these quanuties can be used in tained from the "t'rn%...ional density" Px.-,(" by
system identific:.tion piroceduwr-. The chosen statistics
must not be fundamenfally symmetric quantities, like the 'A prese havile the chstachetiics is easily defined and will be dis-

correlatinn function, in order to capture any texrrporal cui.d ti the M•ext ion



using the Chapman-Kolmogorov equation [7, p. 89] id U,, X.-j i -j

Px.Ix,-.(XY) RSFi. I. Generation of a Markov sequence of order M.

- pxlxI(xlz)p,,tlx,..(zly)dz, m ; 2. (2)
put relationsh;? is monotonic and hence can be inverted

Thus the transitional density or equivalently the bivariate to give the generating system of a general Mth-order Mar-
"density pZ .x._(x, y) completely specifies the fist-order kov time series:
Markov process. X.= P , X_). (5)

The definition of Markov proce-s given in (1) is one
sided and gives the impression that Markov process has This generation model is shown in Fig. 1. In the Gaussian
an inherent direction of time, namely, past amplitude val- case, this generating system takes the form of a memo-
ues specifying the statistical properties of the present. One ryless nonlinearity, which transforms the ii.d. uniform
might conclude that a time-reversed Markov process is no sequence to an i.i.d. Gaussian sequence, followed by an
longer Markov. However, an equivalent definition can be all-pole linear system. In the general case, the memory-
given in terms of the conditional independence of the past less nonlinearity is usually present, but is followed in gen-
and future, given the present. From this symmetric defi- eral by a nonlinear system having memory. In either case,
nition, it follows that if {X,} is Markov, so is {X.,} [7, specification of the conditional distribution function leads
p. 83]; this result can also be obtained directly from the to the system that generates the process.
"the one-sided definition above [22, p. 386]. However, the
two Markov processes, the original and its time reversed A. Non-Gaussian Autoregressive Processes
version, may have different characteristics and hence be Very often, inversion of the conditional distribution
temporally asymmetric. In the case of a first-order Mar- function is extremely difficult in practice. Sometimes the
kov process where px,.x,_,(x, y) is a symmetric function conditional distribution function itself may not have a
of x and y, it follows from Chapman-Kolmogorov equa- closed form. To proceed further, we first explore linear
tion that px.. x,_,(x, y) is also symmetric for all m ;3 2 models: from the above description, we assume that the
and as a result, it is easily seen that the process is tern- memoryless nonlinearity transforms the ii.d. uniform se-
porally symmetric. Hence a first-order Markov process is quence into some intermediate non-Gaussian (i.i.d.) se-
temporally symmetric if and only if px .x, (x, y) is sym- quence which is then passed through a linear filter. We
metric, are thus led to AR(M) models for non-Gaussian se-

lf the Markov process {X,} is Gaussian, it can be gen- quences. Validity of a linear model can be verified in
crated by an all-pole, Mth-order linear system described practice and we illustrate this here. From now on, we will
by focus attention on first-order Markov processes (M = I).

X, = alX.-I + a2X- + -2 + a:.X,,u + W. (3) A stationary AR(l) process {X.} is defined by

where {W,} is an i.i.d. Gaussian sequence. Processes X. = pX . -I + W. n = 0, ±1, - • (6)

generated in this fashion are often referred to as being where { Wj is a zero-mean sequence of ii.d. random vari-
autoregressive (AR). Autoregressive models are quite ables and I p I < I. The system constant p is also the nor-
commonly used in diverse areas such as geophysics and malized correlation coefficient of the output process {X.}.
speech processing [20]. One main issue of concern at this point is what first-order

Non-Gaussian Markov sequences may or may not be Markov non-Gaussian sequences can be characterized this
generated by linear autoregressive systems, but they can way (i.e., are linear processes)? We next discuss this is-
be considered as a generalization of AR sequences, which sue via i) the characteristics of the forward and backward
are known to have a simple statistical structure. To obtain conditional means (and their relevance to the direction-
the generation model of non-Gaussian Markov sequences, ality of the process) and ii) the variety of amplitude dis-
we must begin with the conditional density function. Sup- tributions for (X.}. We will have more to say about the
pose { U.) is the output obtained by passing a Mth-order conditional means and their use in selecting a linear ver-
Markov process {X.) through a systcm having the input- sus nonlinear model for non-Gaussian data in sequel.
output relationship given by the conditional distribution 1) Conditional Means and Directionality: In the case
function (cumulative) of linear AR(l) systems, the forward conditional mean is

Ue 8  Pxjlx.-,... . .• , -). (4) a linear function, the slope of which is the system coef-
ficient:

{U.) is then i.i.d. and uniformly distributed over [0, 1] E[X X,.I = pX._I.
[22, p. 181]. Thus, this system is the equivalent of "whit-
ening" filter for Gaussian time series and yields the in- The backward conditional mean depends heavily on the
novations sequence (U.) corresponding to {X.}. Typi- amplitude distribution of the input {W.). If the input is
cally, this system is nonlinear with a finite number M of Gaussian, the backward conditional mean is same as the
states. Being a distribution function, the above input-out- forward: both are linear. As an example of the non-Gauss-
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ian case, consider the AR(I) model with X. uniform the forward mean-squared prediction error equals the
[-1/2, 1/2] and p = I/k for k = :2, ±3 " .3 This mean-squared value of W, [13].' We now show that this
process has the conditional means inequality of forward and backward prediction errors gen-

1 eralizes to all AR(1) processes.
E[X5IX.,•-I] -X,6..-1; Theorem 2: The backward mean-squared prediction

error of a non-Gaussian AR(1) sequence is always less

( x) I k even than the forward mean-squared prediction error.
l= Pnroof. The forward conditional mean of AR(1)

_(kx. + I) mod 1 -, k odd. models is linear, hence the forward mean-squared predic-

The dissimilarity of these quantities reveals the temporal tion error is
asymmetry of the time series. Although a general expres- E[(X. - E[X. XJ,. -1 )2] = E[(X, - oX - E[WJ)2].
sion for the backward conditional mean of non-Gaussian
AR(I) processes cannct be obtained, Lawrance [17] (9)
showed that it is always nonlinear. As this result is useful Since the conditional expectation is the best mean-square
for us later, we give the proof here. estimator, we have

iheor•n i: The backward conditional mean
E[X -II X.] of an AR(1) process is linear only in the E[X._..- E[X._.1 XX])2] s E[(X._ 1 - 8(X,)) 2] (10)
Gaussian case [17J. for all g(-) with equality only when g(X.) = E [. X.].

Proof: Making use of stationarity and the indepen- Making use of Theorem 1, we find that
dence of X. and W, we find that

fx(u) E[(X., - E[X_.,IX.i)2]
4'w(u) = x(pu) (') < E[(X.i - pX - E[W.J)] (11)

where fx(u) = E[e x I is the characteristic function of for non-Gaussian {X,}. It is easily verified that the right-
the random variable X. From (6) and (7), the joint char- hand sides of (9) and (11) are equal and hence
acteristic function of X. and X_- I is

t"_x.,(u, v) = E[exp {juX. + jvX._1}[] (1 2

= I(P + V)X(U)/1h(pU). (8) 0

Differentiating with respect to v and setting v = 0, we 2) Amplitude Distribution: It is difficult to find the dis-
find that tribution of the output of the linear system (6) when the

jE[X._ -e•y] = *(pu)0x(u)/4x(pu). input {W.} is non-Gaussian. A tractable approach for
AR(1) models is to assume a known amplitude distribu-

Using the properties of conditional expectation, the left- tion for the output {X,} and then derive that of the input
hand side could be rewritten as jE[e*4E[X. -I I XJ]]. If { W.. Given the characteristic function of X, the ratio of
the backward conditional mean is affine, we must then (7) can then be used to find the characteristic function of
have W if the ratio represents a valid characteristic function

a(u) + ibex(u) - 4(pu)4x(u) 'tx(pu). (i.e., the ratio must be a positive definite function). Com-
plete characterization of the distributions having this

Dividing by 4x(u) leads to a functions!, equation requiing property and thus produced by linear AR(l) systems is not
that *k(u)/1x(u) be affine in u, which implies a Gaussian known [1 I]. However, under the restriction that the model
marginal distribution. 0 be defined for all values of the system coefficient p be-

One of the interesting consequences of temporal asym- tween 0 and I, these distributions are identical to the class
merry in autoregressive models is that forward and back- L (or self-decomposable) distributions well known in the
ward prediction errors need not be equal. Equality of these probability literature [9], (10]. These distributions are a
errors is implicit in signal prcessing algorithms such as subclass of the infinitely divisible distributions containing
Burg's maximum entropy method (12, p. 22]. In the case all the stable distributions and have been shown to be uni-
of our uniform AR(l) example, it follows from (7) that modal 134). In the important case of symmetric output
the input W. takes the values -(I1k - l)/21k1, - (IkI distributions, it follows from (7) that membership in class
- 3)/21k 1. • - (IkI - l)/2 kI with equal probability. L guarantees that the model is defined for the entir range
It can then be shown that X. -' is completely determined - I < p < 1. Using the Lkvy characterization of infi-
by X.: X._ - (kX.) mod I - 1/2 fork even and X-. t nitely divisible distributions, we represent the character-
- (kX. + 1/2) mod I - 1/2 for k •ld. Thus the process istic function of a symmetric, non-Gaussian random

has zero prediction error in the backward direction, while

"This curima ecwupk wu pte4Ara potaled out by Rosnabla t24.
tlu eadkt eunvk &I the e"d or Sectioa 11 conv~rt to k - 2. p. 52).
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variable belonging to class L as [291

*X(U) alog hx~u) 14 aer ~ t

where Ro = R \ 0 and k(a) is at, odd s;ymmetric function_________________
which is nonnegative, nonincreasing an (0, oo) and sat-W 0 f so 1 I 10 10

isfies the condition 11.1~,,cxka) det + 111ai>iCa'k(ct) da()
<Oa*. Takcing the derivative on both sides of (13) 5

_jd*x(u) = dka a0

which is the Fourier transform of k(ct). This formula can
be used to verify membership in class Land further char- 20 40 go so 10 10 4 6

acterize its subclasses. To belong to class L, the deriva- (b)

tive of the logarithm of a candidate distribution's char-
acteristic function (multiplied by -J) must have a Fourier
transform having the properties of k(a). In the accom- 0o
panying table, we list the LUvy measure functions k(a)
corresponding to some of the known symmetric non-4.
Gaussian distributions. 30 4 s o i 140 Ito

Consider, for example, the first-order Laplacian auto-
regressive (LA.R(l)) model [(171. If {XJ) has a Laplacian WC
density with zero mean and unit variance, px(x) = exp Fig. 2. Sample functions of (a) HAR(1). (b) Gaussian. and (c) LAR(I)

{-lix2jx}/li/2 and 4'x(u) = 2/(2 + u2). Substituting pmoseamwith a offelaton of0.8betwen adjacentsamples.

this characteristic function into (7), we find that the result
is indeed a valid characteristic function wit Substituting its characteristic function into (7) and eval-

4WU= 1+(I _ ý2) 2 uating the inverse Fourier transform 181, [231, we obtain
2 + uthe marginal density of the input {W.}:

Thus, the input W. is zero with a probability p2 and a cos rp/2 cosh irw/2
normalized Laplacian with probability 1 - p2. In other pw(w) =cos vp + cosh irw - n
words, the generating systtem in (6) could be written for
the LAR(l) process as The system thus required to generate first-order Markov

hyperbolic secant, HAR(l), distributed data is not a ran-
PX.,A + a. W. domn coefficient system. Instead, the input to the first-or-

where ( W.) is iLi.d. Laplacian (zero mean, unit variance) der AR system is a sequence of i.i.d. random variables
and a. is to independent discrete random variable taking having the distribution given above. HAR(l) data having
the values 0 and I with probabilities p2 and I - p2, re with a correlation of 0. 8 is plotted in Fig. 2(a) along with
spectively. Generation of the LAplacian model thus re- Gaussian and Laplacian AR(l) data of same correlation
quires a random coefficient system. One of the conse- for comparison. Although both the hyperbolic secant and
quences of a random coefficient generating model for the Laplacian densities have exponential tails, the IIAR(l)
Laplacian casn is the appearance of exponential "run and LARMl data differ markedly because of the exponen-
downs" (with increasing probability as p increase) in the tial rundowns in the LAR(l) case.
sample functions. This effect is illustrated in Fig. 2(c) for Note from Table I that only in the Laplacian case is
a high correlation of 0.8. This trend may be unsuitable k~ct) bounded at the origin and that it requires a random
for modeling a given set of data. coefficient system. In general, we can use this bounded-

In contrast, suppose (X.) has a hyperbolic secant am ness criterion to determine which class L distributions will
plitude distribution 5: necessitate a random coefficient system. For the density

function of (W.) not to have an impulse at the origin
px~x) I sec !x-(which results in a random coefficient system)

2 ~~~lim * )=0 -lirn *Ir(U) - *IX(pu) -n

From (13), we must then have

'As aminefaig ptopery or this diatrIbtion is that. jusg a in the Gauss kcx
ian cane, its chaructedisc fNactiom has the zas functoasl form as the lim ee~ - "n) da -w.
ampliwkd distributios: #i,(it) - sech a. Mf
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TABLE I
Livy ME~suas Fu-4norS oF SOME SvMMErTrc NON-GAUSSIAN DW'IXTIn'oNs

Characteristic Function LUvy Measure Functioa
Distribution 4x(") k(a)

LAPa eM si (a)

Hyperbolic secamt sech M cosch (a)

Hyperbolic secat squared Mo ch(!!) sip (a)
2m .- -exp (21a1) - I

Cauchy -
for

Symmetric Stable {v ' 1,# a 'lmipa

2

0<8<2

On the other hand, sace Ii._. i.ae k(ca)/ar d& - monotonic [11]), there is a critical value p, of the system
lim... 0 k(a), for the input distribution not to have an im- coefficient beyond which the ratio in (7) exceeds unity, a
pulse at the origin, the [kvy measure must be unbounded situation incompatible with the ratio being a characteristic
at the origin. All k(a) which are bounded at the origin will function. Consequently, highly correlited sequences can-
necessarily demand random coefficient systems for the not be generated having such amplitude distributions while
generation of data having the corresponding amplitude they can be generated for smaller correlations. If the char-
distribution. acteristic function has zeros, the range of p is further re-

Because the input distribution for the HAR(l) model is stricted. Supposing that uo is a zero of 4$x('), the denom-
absolutely continuous, the transitional density of this first- inator of (7) becomes zero when u = uo/p; for the ratio
order Markov process can be derived. Using (6) to be bounded, ul = uo/p must also be a zero of fx(').

Px.l.-(yjx) = Pw(Y - #x) This condition then becomes recursive since a zero is re-
cos ip/ 2 cash ~ - ~quired at U2 = UO/P 2 , u3 = uo/p 3, etc. Thus Ox(') must

=cos rp/2 cosh r(y - Ax)12 (14) have an infinite number of zeros if it has any. For the
cm irp + cosh r(y - or) uniform AR(l) example, the characteristic function is

Let us now detail how HAR(l) data can be generated. sin u/u and has an infinite number c.f equally spaced ze-
First the i.i.d. input sequence (W,) is generated from the ros. First-order Markov uniformly aistributed time series
independent sequence (UQ) distributed uniformly be- are thus defined only for p = I/k, k = ±2, ±3, - • • .
tween 0 and 1, using the pointwise transformation W Systems with such discrete sets of coefficients seem to be

PW,(U.) where p~'() is the inverse of the distribution of academic interrst only.
function of (W.}. The correlated data sequence (X.1 is Verification of compatibility of a time serie.,' amplitude
then obtAined by passing { W, through the linear system distribution witn the conditions implicit in (7), positive
defined by (6). This procedure is precisely the inversion definiteness of the ratio ,x(u)/*x(pu), represents a for-
of conditional distribution function described in the pre- midable task if only an analytic approach is used. Success
vious section, a general procedure now simplified by the is limited by one's ability to derive the inverse Fourier
assumption of the linear model. The distribution function transform of this ratio and show that the result is non-
of a , is found to be negative for some range of p. We used numerical methods

to check for the existence of first-order Markovian non-

{2(W ( X sn sinh irw~/2 Gaussian time series other than those in class L and vani-
P•(w) pr PCosi rw /2 (15) ants of the uniform example given above. Our procedure

can be used whenever a symmetric histogram estimate ofthe probability density of {X.1 is available: an analytic
where Px (x) = (2/v) tan-' (exp {rx/2 )). Using this dis- specification is not necessary. The test consists of the fol-
tribution function in (15) and evaluating the inverse, we lowing steps.
obtain I) Given a sampled probability density function, re-

PW1()-2 [n -I (ta sample it at a lower (rational) rate. Any of several deci-.
[S 2 sn In - • mationlinterpolation strategies can be used here [4].

2) Fourier transforms of the original and downsampled
If we remove the restriction demanding a model for all density are computed with care taken that the sum of each

p. output distributions noM in class L are possible. In some density sequence is unity.
cases (as when the characteristic function *X(u) is non- 3) The point-by-point ratio of these transforms is corn-
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puted and windowed to eliminate inaccurate division 00
where either of the transforms is small. This window must O..Vo

be chosen so that negative ripples are not introduced in 0.05 " .
the amplitude domain. Consequently, positive definite
windows like the triangular would suffice. We have found o
that a nondefinite window such as the rectangular one can .|.. . .
be used by noting how negative its ripples become and 4 -2 0 2 4 4 -2 0 2 4

numerically checking that no ripple exceeds that value.

4) The inverse Fourier transform of the windowed ra- I---.- WOW- c--
tio is computed and checked for "essential" positivity: DWU -

negative portions are allowed to exist but should be within O-numeric inaccuracies. OAA

To illustrate the procedure, we choose the sampled ver- 0

sion of the weighted sum of three equal variance Gauss- . .
ians with means -1.2, 0, and 1.2, respectively. The re- 40 -02 0 01. 0.4

suiting density is midtimodal and hence is not in class L.
We investigated whether this density could be generated
by first-order systems with coefficients 1/5 and 1/3. See .6

Fig. 3. We reduced the sampling rate of the density vector -4 "..

by factors of 5 and 3 by simple downsampling, taking 1
care that aliasing was minimal by computing the Fourier 2- J2-
transform. The point-by-point ratio of the two transforms ..

contained numeric noise in the high frequency region due
to rounding. We used a rectangular window to remove t42 0 0.4 4U 2 0 0.2 0.4this noise and obtained inverse transforms shown in the •

fourth row of Fig. 3. Clearly, the example density seems o0. &M
compatible with p = 1/5 but not with p = 1/3 as the 0.1.Io 005
latter results contain significant negative values in the -oW1

tails. This threshold is close to the critical value p, men- 0.01 0.01

tioned previously. 0W 0.005-

While this numeric approach is imprecise, it can be val- 0 0

idated via simulation. Assuming a candidate distribution 40M5a .- 0 2 , 4.4- " 0

seems viable, the result of the numeric test is the ampli- ,,
tude distribution of the input. By simple calculation of the Fig. 3. Figures in left and righ lumns refertosystecoefficientsof 1/5

partial sums, the cumulative distribution of the input can and 1/3. respectively. The first Mw depicts sampled output amplitude dis-

be calculated and used to generate the i.i.d. sequence tributions and down-sampled versioas. The second row shows the corre-

{ W, predicted by the computations. By passing this se- spording characteristic functions obtained by taking Fourier transforms.
- Point-by-point ratio of thet transforms is shown next along with the rect-

quence through a first-order filter, estimating the ampli- aquiar window used. Finally, the computed input amplitude distribution

tude distribution of the output, and comparing the esti- (invere tratsform) is shown along with the output distribution.

mate with the candidate distribution, the prediction can
be. confirmed. We performed this test on the trimodal ex- Let Px. r(X, y) be the joint density of random variables
ample just described for p = 1/5. The resulting estimate X and Y with marginal densities px (x) and p- (y), respec-
of the output distribution did greatly resemble the candi- tively. Suppos-. Px.r(x. y) satisfies the condition
date distribution and verified that amplitude distributions
produced by first-order systems need not be unimodal. We r y)
have thus demonstrated the existence of such densities 3d. dy < oo. (16)
more directly than in [I I]. -- px(x)py(y)

Then, complete orthonormal sets {•O(x)}•.o and

B. Nonlinear Markov Processes and Diagonal { ',<y)}'-o0 can be defined in L2(px dx) and Le(pr dy) such
Expansions of Bivariate Distributions that the series expansion

Bivariate distributions of stationary random processes
have in the past been analyzed using series expansion Px.r(x. Y) = px(X)pr(y) I+ - ,x))',{y)1 (17)

methods. These expansions find application in the study
of Markov processes [331 and of the effect of nonlineari- commonly referred to as the diagonal expansion because
ties on random processes, e.g., in the analysis of the out- of the single summation, converges in mean-square sense
put of a cascade of a narrow-band filter and a square law (161. A well-known example is Mehler's expansion of a
detector [1]. bivariate Gaussian density in terms of Hermite polyno-
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mials [1]. Note that by definition 00(') n o(-) n I and metry. For example, for the HAR(l) model
that Xo = 1. The coefficients of expansion are given by 1

X. OX)Oy)p,,(x, y) dx px..X.x, y) = 2eh T
cos irp'/2 cosh r(y - p'x)/2

and are by convention taken to be nonnegative: the sign cos irp' + cosh ry - px)
is incorporated in the orthonormal sets [30]. The ordering
of the basis functions is determined so that the coefficients (19)
represent a decreasing sequence: 0 s Xi 5 1 and Xi 2 The necessity of the general expansion (17) for non-
Xj, i > j. Furthermore, note that the orthonormal sets are Gaussian processes is thus clear.
complementary eigenfunctions of the bivariate density: Using the diagonal expansion ofPx.,x. - I (x, y), we can

write the conditional distribution function of the Markov
Px.r(x, y)O(X) dx = VX4y) process {X,} as

px,y(x, y)O(y) dy = )4#). PX.X.,(xly) = px(z) I + j• OKZ)y) dz.

The terms inside the summation sign of (i 7) account. (20)
for the dependency between the two random variables X
and Y; if q = 0 for i > 1, X and Y a statistically in- The diagonal expansion thus servs as a tool for analyzing
dependent, The coefficient X, is referred to as the mtaximal the generating system of the Markov process. However,

correlation coefficient because it is the supremum over all as we have seen in Section I1, we need the inverse of the

(finite-variance) functions gQ(') and g2(-), of the normal- above conditional distribution function to generate the

ized correlation between gi(X) and g2(Y) [28]. If 01(') Markov sequence from an i.i.d. uniform sequence. Cal-

and 't(") are affine, it follows from orthonormality that culating the inverse of the summation in (20) even in an
0#) = (x - sx)/lx and 00(y) = (y - r)/r where u approximate form is extremely difficult. If, however, we

and a2 are the mean and variance, respectively. In this limit the diagonal expansion to a finite number of terms

case, the maximal correlation coefficient X, coincides with (making sure that the integrand is nonnegative) such that
the usual correlation coefficient. However, X, is in gen- the conditional distribution function can be inverted, we

eral larger than the correlation coefficient in magnitude have a method for generating correlated non-Gaussian
and gives a better characterization of the dependence be- Markov sequences that are not necessarily linear. Since
tween X and Y: the random variables are independent if the additional dependency between X. and X. -I with each
and only if X, is zero [26]. The maximal correlation coef- added term decreases progressively (Xi > k+, ), these

ficient and the functions 0(') and 01,(-) are important in terms could be selected to match the required dependency

approximating the series expansion in (17) with a finite to a large extent. Sarmanov.[27] studied the finite sum,
number of terms. continuous-time version of (20). For continuous-time

Let us apply the foregoing discussion to a stationary processes, diagonal expansions with finite number of
Markov random sequence {X.). Denote its marginal den- terms cannot be used when the eigenfunctions and the
sity by px(') and the joint density of X. and X.-. by marginal density function are continuous: the finite sum

Px,,' ). We must have does not remain nonnegative over the entire domain for
all values of separation t between the samples. Fortu-

p4.L-.@' y) dy px(x) nately, this problem does not arise in the discrete-time
case.

a If the domain of the marginal density is finite, uniform
and px...,(', y) dx = px(Y) (18) on [0, 1] for example, polynomials can be used in the

finite sums. If the marginal density function is one of thefor all m because of stationarity. These conditions, how- classical weight functions, orthogonal polynomials such

ever, do not restrict the bivariate density functions of the assJacbi polynomials sech
prom tobe ymmtri; p..x_.(, y isnotnecssaily as Jacobi polynomials can be used; otherwise the too-

process to be symmetric; P,,,, (x, y) is not necessarily ments of the distribution can be used to construct orthog-
identical topf..hfm(y i). Although asymmetric diagonal onal polynomials. For example, a uniform [0, 1] distrib-
expansions of the form given by equation (17) have beeai uted, temporally symmetric Markov process can defined
studied before [21, (26], [311, they have not been applied by the joint amplitude distribution
to random processes. A special case of (17) is commonly
considered where the two sets of orthonormal functions pv..v..,(xy) - I + a(2x - l)(2y - 1)
are identical, which yields a symmetric bivariate density
and imposes temporal symmetry on the underlying time laI • 1. 0 5 x, y - 1. (21)
series. As we have noted earlier, in contrast to the Gauss- For distributions defined on the infinite domain, the
ian case, the bivariate densities of non-Gaussian pro- functions in the expansion have to be chosen depending
cesses need not be symmetric because of temporal asym- on the particular case. However, some recipes applicable
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to all situations exist. Take for instance, the temporally For an arbitrary stationary Markov process, the condi-
symmetric process defined by the Morgenstern's family tional means may or may not be linear. These quantities
[5, p. 578] of joint densities are given in terms of the components of the diagonal ex-

Py..r..-A(x Y) = pr(X)py(y) {1 + a(2Pr(x) - 1) pansion as
0

(2p&(y) - .1)W. (22) E[X•IX,_ 11 = ._ .[X, A0(X . J
It can be obtained by passing the uniform Markov se-
quence (V,} defined in (21) through the nonlinearity E[X4.-_XJ] - kE[X._t(XX_0]•,XX).
Pl y(-) where Pr() is the (cumulative) distribution func-
tion of the required output { Y.). Such an operation on If any basis function {41(')} is linear, under the condition
{V.) leads to P.y.r._.(x, y) = Pv.v..,(Py(x), Py(y)) from that the fuiictions
which (22) follows by differentiation. Devroye [5, p. 580]
gives a simple generation rule for (V.) (and thus for :ft.__.__ ) i . Px..x._,( Y)
(Y,}). A more direct generation via (4) requires the eval- ax px(X) " ia YPx(Y)

uation of the conditional distribution. This procedure re- do not change si on their domain (a, b), we can con-
sults in a quadratic equation for Pr(YJ involving Y._ - do than ,a otheir domais nt a, b, w e anc
and U. (recall that this is ii.d. uniform [0, 1]), the in- elude th, , other linear term is present and that the fn
version of which gives us the generation formula

fPi1 (3aQ(YE._..) - 1 + V1- 3aQ(YA._.~)] + l2aU~t(.M..I) Y1.. , -0 C

, Ij'(U.-), QY..,) =0

where we have set Q(Y, - ) a 2Pr(Y, -) - I for sim-
plicity.

As an example of a temporally asymmetric case, con- ear term must be the first member ,0(') [211. The series
sider (Z,} defined by expansion for the forward conditional mean then truncates

with the result
p~z..-.,(x, y) = pz(x)pz(y) f{I + -a(P'z(x) E[X.IX,,_ ] = X1E[X.0,,(X.)l01(X._ 1)

- 2Pz(x))(2Pz(y) - 1)). (23) indicating that the forward conditional mean is propor-
tional to the eigenfunction ý,(X. - 1. Similarly, when one

Proceeding as above for the generation of {}., we find of the members of {(OX')} is linear, the expansion for the

a cubic equation in Pz(Z3 ) which makes the generation backward conditional mean reduces to a single term. In
a these cases, the conditional means yield direct informs-

difficult. It is much simpler to generate the process back- thes ases, the nioam a l et ninf
wards. In this case, we obtain a quadratic equation for tion about the components of the diagonal expansion,
Pz(Z,,- 1) as in the symmetric case above, with the coe- thereby leading to the conditional distribution and theficients being different functions of Z,, and U. generation system.

Ae maordb wbkeing differentfuncthen dagnal expa n We tested the analysis procedures described here as well
as the more common, Gaussian based ones on two sets of

method for generating correlated sequences is that the en- data the linear HAR(l) time senes {X.) and the nonlin-
tire range of correlation coefficients cannot be realized (for ear time series (Y.) defined by (22) also having a hyper-
the processes {Y.) and {Y) above, lp~ Is 1 /3 and for bolic secant marginal distribution. The nonlinear model
{(.4}, lp s 1 i/3-13). Maximally correlated random is thus defined by
variables are important in variance reduction techniques
in Monte Carlo simulation. Typically, adding more terms 1 Y) I 1 y +
in iae finite sum improves the available range of correla- . -,, yh sech -2 T
•ions, but it becomes increasingly difficult to ensure the
nonnegativity of the sum. The question of the available . [ T= (ei"'r) -
range of correlation can be linked to the comprehensive- 1
ness of the defining bivariate distributions [5]. A family F4 1)
of bivariate distributions is said to be comprehensive if it - tan- (e"',) - lJ.
includes the product of marginals and Frechet's extremal

distributions (which result in extremum positive and neg- The correlation coefficient of the adjacent samples of
ative correlations I and -1). Clearly, the first require- this process is py = 3b 2a - 0.88375 a where b -
ment is satisfied for the joint densities defined using di- j..z((4/r) tan" et/) (1 /2) sech rz/2 dz 14/rs (3)
agonal expansion methods while the second is usually not. and (-) is Riemann's zeta function. Also, from (2) we
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Fig. 4. Empirical power spectra for temporally symmetric and asymmetric time series having a hyperbolic secant marliaal
amplitude distributioa.
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Fig. 5. The left column displays empirical forward and backward conditional means for a tcmporally symmetric hyperbolic

secant tie series and the right column the coaddtioaaI mesas for the linear. temporally &symuerimc HAR(I) time series

we get try. For the nonlinear, temporally symmetric data, both

I rx 1 r conditional means are nonminear but identical. See Fig. 5.
py seyh 1+ 3 The conditional means thus identify temporal asymmetry

well where power spectral estimation based techrniques
4 ta (en'-W )- 1fal.

4 IV. CONCLUSIONS

*r {j a1 e") Non-Gsussian pro~cesses present new challenges to the
statistical signal processor attempting to develop analysis

and it follows that the correlation function of this tern. techniques. We have shown that correlation analysis can-
porally symmetric model is Rr(m) = (1 - 3)6(m) + not be expected to suffice, which immediately distin-
3bo". Note that this temporally symmetric first-order guishes non-Gaussian data from Gaussian. Temporal
Markov time series can only be produced by a nonlinear symmetry can be assessed with conditional mean araly-
system. The correlation function of the corresponding lin- sis. While not shown here, the statistical characteriszics
ear time series, while having the same marginal distribu- of conditional mean estimates are identical to Uose of his-
tion, is simply RX(nt) -P". togram-based probability d,'.nsity estimators [25. Con-

We generated these two time series so that they have sequently. hypothesis tests for determining the temporal
the same correlation coefficient of 0.25 between adjacent symmetry of a time series can be established. However,
samples. The power spectral -density estimates of the two first-order conditional mean anslysis does not c•pture all
data plotted in Fig. 4 are quite similar. The forward con- of a time series' temporal symmetry properties: similar
ditional mean of the HAR(I) data is linear while the back- forward and backward means can belie an uymmetric
ward mean is not, thus confirming its temporal aiyrmne- process.



Successful analysis can be measured by one's ability to Care must be taken in applying the results and concepts
generate a statistically identical version via simulati-n. developed here to non-Gaussian data. Many of our results
This yardstick has implicitly formed the basis for our sys- have been developed for first-order Markov processes.
tern-based modeling of non-Gaussian Markov processes. Extension of these ideas to higher or-Jer data in particul.-
Linearity of the system can be tested by considering the must be carefully considered. A distribution-free tech-
forward and backward conditional means. If the forward nique for estimating model order is described elsewh-re
conditional mean is linear and the backward mear. is non- [ 151. A logical extension of the analysis techniques would
linear (the time series must be temporally asymmetric if be based on higher order conditional means. Such quan-
linear and non-Gaussian), then a linear model may suf- tities require much data to estimate and the difficulty of
fice. If a first-order model is appropriate, the amplitude the analysis increases. In these situations, higher order
distribution of the driving "white noise" process can be correlation functions are the only current alternative;
determined with our numerical method. If the method fails however, for the reasons given above, they are limited in
to produce a valid amplitude distribution, nonlinear scope. New techniques based on a fundamental under-
models may be the only recourse. If nonlinear models standing of non-Gaussian processes are clearly needed.
seem necessary, our theoretical framework is insufficient
to produce the correct generation system in all cases. If, REFLEENCF.S
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